Урселов број

Од testwiki
Прејди на прегледникот Прејди на пребарувањето
Одлики на бранови.

Во динамиката на течности, Урселовиот број ја означува нелинеарноста на долгите површински гравитациски бранови на флуидниот слој. Овој бездимензионален параметар е именуван по Фриц Урсел, кој зборувал за неговото значење во 1953 година.[1]

Бројот на Урсел е изведен од експанзијата на бранот Стоукс, серија на пертурбации за нелинеарни периодични бранови, во граничната вредност на долг бран на плитка вода - кога брановата должина е многу поголема од длабочината на водата. Тогаш Урселовиот број U е дефиниран како:

U=Hh(λh)2=Hλ2h3,

што е, освен константа 3 / (32 π 2), односот на амплитудите од втор ред и членот од прв ред во котата на слободната површина. [2] Користените параметри се:

Значи, параметарот Ursell-U е релативната висина на бранот H / h помножено со релативната бранова должина λ / h на квадрат.

За долги бранови (λh) со мал Урсел број, се применува U ≪ 32 π 2 / 3 ≈ 100,[3] линеарна бранова теорија. Инаку (и најчесто) нелинеарна теорија за прилично долги бранови ( λ>7ж ) [4] – како равенката Korteweg–de Vries или Boussinesq равенките – мора да се користи. Параметарот, со различна нормализација, веќе бил воведен од Џорџ Габриел Стоукс во неговиот историски труд за површинските гравитациски бранови од 1847 година.[5]

Наводи

Предлошка:Наводи

Надворешни врски

  1. Предлошка:Наведено списание
  2. Dingemans (1997), Part 1, §2.8.1, pp. 182–184.
  3. This factor is due to the neglected constant in the amplitude ratio of the second-order to first-order terms in the Stokes' wave expansion. See Dingemans (1997), p. 179 & 182.
  4. Dingemans (1997), Part 2, pp. 473 & 516.
  5. Предлошка:Наведено списание

    Reprinted in: Предлошка:Наведена книга