Пресек со y-оската

Од testwiki
Прејди на прегледникот Прејди на пребарувањето
Пресекот со y-оската на права зададена во експлицитна форма. (Тука правата е „генерична“ и произволно е „земен“ негативен наклон и позитивен пресек со у-оската. Подолу има примери со конкретни вредности.)

Во дводимензионална геометрија, пресек со y-оската или y-пресек на една функција или релација е y-координатата на точка каде што графиконот на функцијата или релацијата ја пресекува y-оската. [1][2][3][4][5] Поради тоа што y-оската е множеството на точките за кои x=0, пресекот со y-оската се пресметува, заменувајќи x=0 во функцијата или релацијата и решавајќи за y.

Пресекот со y-оската на права во рамнина

Пресекот на y-оската со права во рамнината е y-координата на точката каде што правата ја пресекува y-оската.[6][7][8]. Зборот „пресек“ може да значи и самата точка, а не само y-координатата на оваа точка.

За пресметување на пресекот со y-оската на една права, се заменува x=0 во равенката на правата. Добиената вредност за y е пресекот на y-оската.

  • Ако правата е зададена со равенката:  y(x)=ax+b  или само  y=ax+b  каде што a и b се реални броеви, следува дека за x=0:  y(0)=a0+by(0)=b.
Пресекот со y-оската на правата  y(x)=ax+b  е y-вредноста  y(0)=b,  односно точката(0,b).
Пример: Дадена е линеарната функција y=3x-2. Тука a=3 и b=–2. Значи, пресекот со y-оската е b=–2, односно точката (0,–2).
  • Ако правата е зададена со равенката:  Ax+By=C  каде што A, B и C се реални броеви и B≠0, следува дека за x=0:  A0+By=Cy=CB.
Пресекот со y-оската на правата  Ax+By=C  е y-вредноста  y(0)=CB,  односно точката (0,CB).
  • Секоја права која не е вертикална има точно еден пресек со y-оската.[9]
  • Две прави со истиот наклон, а различни пресеци со y-оската се паралелни прави.[10]

Аналогно, пресек со x-оската е x-координата на точка на x-оската низ која минува графиконот на функцијата или релацијата. Овие x-вредности исто така се нарекуваат корени или нули на функцијата бидејќи вредноста на функцијата во пресекот со x-оската е y=0.[11][12]

Пресек на y-оска на функција

Според дефиниција, функција назначува точно една излезна вредност за секоја (влезна) вредност во свој домен. Ова значи дека функција може да има најповеќе еден пресек со y-оската.

  • Ако x=0 е во доменот на функцијата, функцијата ќе има точно еден пресек со y-оската.
  • Ако x=0 не е во доменот на функцијата, функцијата нема да има пресек со y-оската и графиконот на функцијата не ја пресекува y-оската.

Пресеци на y-оската на релација

Некои 2-димензионални математички релации како што се кружници, елипси, и хиперболи можат да имаат повеќе од еден пресек со y-оската.[13]

Примери

  1. Пресекот со y-оската на функцијата y=4 е точката (0,4). (Ова е константна функција чиј графикон е хоризонтална права која минува низ точката (0,4).)
  2. Пресекот со y-оската на линеарната функција y=3x–2 е точката (0,–2). (Ова е права во експлицитна форма y=ax+b со b=–2)
  3. Пресекот со y-оската на функцијата 30x+2y=120 е точката (0,60). (Ова е линеарна функција со наклон a=–15 која минува низ y-оската во точката (0,60).)
  4. Пресекот со y-оската на полиномот y=anxn+an-1xn-1+...+a2x²+a1x+a0 е a0; т.е. пресекот е константниот член.[14]
  5. Функцијата y=1/x нема пресек со y-оската бидејќи рационалната функција 1/x не е дефинирана за x=0, т.е. x=0 не е во доменот на оваа функција.[15]
  6. Функцијата y=log(x) нема пресек со y-оската бидејќи логаритамската функција y=log(x) не е дефинирана за x=0, т.е. x=0 не е во доменот на оваа функција.[16]
  7. Пресекот со y-оската на функцијата y=x²–4x+3/(x+2) е точката (0;1,5).
  8. Пресекот со y-оската на релацијата (x–2)²+(y-1)²=8 се точките (0,3) о (0,-1). Графиконот е кружница која ја пресекува y-оската двапати.
1. Пресекот со y-оската на константна функција. 2. Пресекот со y-оската на линеарна функција во експлицитна форма. 3. Пресекот со y-оската на линеарна функција во општа форма. 4. Пресекот со y-оската на полином е константниот член.
5. Рационалната функција y=1/x не ја пресекува y-оската. 6. Логаритамската функција y=log(x) не ја пресекува y-оската. (Овде со основа=10.) 7. Пресекот на y-оската на алгебарско рационална функција е точката каде што броителот е 0. 8. Оваа релација чиј графикон е кружница има два пресеци со y-оската.

Наводи

Предлошка:Наводи

Поврзанo

Надворешни врски

Предлошка:Портал

Предлошка:Математички полиња

Предлошка:Commons